
ADAPTIVE SUBSAMPLING OF IMAGE SEQUENCES FOR REMOTE EXPLORATION

David R. Thompson1, David Wettergreen2, and Rebecca Castãno3
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ABSTRACT

Planetary exploration robots currently collect science im-
ages at a very limited rate due to communications band-
width constraints. Onboard image understanding can im-
prove science return; the remote agent can collect many
images and then select informative subsets for transmis-
sion at each communications opportunity. Often due to
the inherent complexity of object recognition essential
image features are hidden from the autonomous agent
during subsampling. We present a method to select
information-optimal summary subsets without detecting
the content of interest directly. Instead, the remote agent
leverages correlatedproxy features that act as latent in-
put dimensions in a Gaussian process model. We for-
mulate selective image transmission as an active learning
problem in which the agent chooses an observation set
that maximizes information gain over the unknown image
contents. Experiments in autonomous geologic site sur-
vey use texture-based image analysis to improve selective
subsampling of rover navigation image sequences.

Key words: Autonomous Science, Computer Vision, Ac-
tive Learning, Gaussian Processes.

1. INTRODUCTION

Many planetary exploration scenarios involve an au-
tonomous remote agent that images a spatially- or
temporally-varying process [1, 2]. This work considers
the task of summarizing image sequences to an opera-
tor using a small subset of collected data. The method
is applicable whenever the images are too numerous to
display [3] or when the remote agent can only transmit a
small portion due to bandwidth constraints [4, 5]. In our
approach the agent sends a subset of images that best rep-
resents the content of the complete dataset. However, the
human operator may be interested in phenomena that the
automatic system cannot detect reliably [6]. Due to this
asymmetry, essential attributes of the data products are
unknown during the subsampling procedure. Our method
finds informative subsets without detecting the content of
interest directly. Instead the remote agent leverages cor-

Figure 1. The rover Z̈oe during autonomous traverse at
the Amboy Lava Field. This portion of the lava field con-
sists of two principal terrain types, basalt mounds and
sediment, which are both visible in the background.

related image attributes that function as latent input di-
mensions in a Gaussian process model. We formulate
representative subsampling as an active learning problem
[7] in which the agent chooses an observation set that
maximizes information gain with respect to the content
of interest.

We consider the specific domain of science image se-
quences obtained during planetary exploration. This is
a particularly suitable application: spacecraft must op-
erate autonomously for long periods between communi-
cations opportunities and bandwidth may limit transmis-
sions to a handful of data products [4]. Moreover, image
sequences result from common spacecraft activities such
as flybys, lander descent imagery, and rover navigation
[8]. These sequences often contain many similar images,
slow trends, and occasional moments of abrupt change.
However, conventionalperiodic samplingmethods return
images at regular spatial or temporal intervals [9]. They
ignore content redundancy and risk under-sampling the
most important transient events.

Exploration missions can benefit from onboard data anal-
ysis; the spacecraft can interpret the science content of
collected data to identify the most informative images to
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transmit. However, remote science favors phenomena at
the limits of perception and scientists will inevitably con-
sider features of the data that are too abstract or subtle
for automatic pattern recognition. Geologists analyzing
Mars Exploration Rover imagery have considered sed-
iment structure [10] and the morphology of rocks and
outcrops [11]. These present significant pattern recogni-
tion challenges; reliable automatic feature detectors may
not be feasible. This work describes field tests at Amboy
Crater (Figure 1) in which automatic descriptor attributes
suggest the most informativem frames in sequences of
rover navigation imagery. Here texture-based image anal-
ysis improves selective subsampling during autonomous
geologic site survey. Our method learns to infer changes
in image geomorphology from these correlated texture
descriptors without explicitly detecting the geologic fea-
tures themselves.

2. APPROACH

We represent a set ofn collected images asA = {ai}
n
i=1

associated with corresponding attribute vectorsX =
{xi}n

i=1
, xi ∈ IRD. Each attribute vector includes one

or more independent variables, such as the temporal po-
sition, as well as numerical image descriptors produced
by automatic analysis. For example, a positionti ∈ IR
and an image descriptordi ∈ IR produce an augmented
attribute vectorxi = [ti, di] ∈ IR2. The dimension of
xi is generally low, reflecting the fact that these summary
attributes are far more compact than the original images.
They generally require trivial bandwidth to transmit, so
the agent can freely communicate the entire matrixX of
attributes for the whole sequence. In addition to the at-
tribute vector each image is associated with somescience
content, e.g. its actual semantic interpretation. For ex-
ample, in our case study application of geomorphology
the relevant content is the type of terrain appearing in the
image. For simplicity we will treat science content as a
scalar value so the sequence defines a vectors = {si}n

i=1

with each element corresponding to the content of an in-
dividual image.

Gaussian process regression [12, 13] models the science
content with an underlying function of the attribute vec-
torsf(x) : IRn 7→ IR. We definesi = f(xi) + N (0, σ2)
such that image contents are the underlying function per-
turbed by Gaussian-distributed noise. This formulation
permits classifier or multiple-output Gaussian processes
for more sophisticated representations, but we will limit
these experiments to the case where science content is
described by a single scalar label. This content is appar-
ent to an operator viewing the image but invisible to the
remote agent. We determine a prior distribution over pos-
sible content using a covariance matrixK with elements
given by a covariance functionKij = κ(xi,xj). We em-
ploy the commonsquared exponentialcovariance func-
tion [13] parameterized byθ = {ψ1, ψ2, w1, . . . , wn},
wherew arelength scalehyperparameters corresponding

to different image attributes.

κ(xi,xj) = ψ1 + ψ2 exp

{

−
1

2

d
∑

k=1

(xik − xjk)2

w2

k

}

(1)

For a vector-valuedf(X) (representingf(x) evaluated
for multiple attribute vectors), we take the prior distribu-
tion to be a zero-mean multivariate Gaussian,f(X) ∼
N (0,K). Thus the prior over image content is also
Gaussian-distributed:

p(s | θ) = N (s | 0,K + σ2
I) (2)

Given a set of labeled training images with attributesXL

and associated contentsL, we wish to compute the poste-
rior distribution over unknown contentss at locationsX.
We can do so by conditioning the joint Gaussian:

p(s | sL, θ) = N (s | µ̂, Σ̂) (3)

The result is given by the standard Gaussian process pre-
diction equations [13]:

µ̂ = κ(X,XL)TQ−1
sL (4)

Σ̂ = κ(X,X) − κ(X,XL)TQ−1κ(XL,X) (5)

Q = κ(XL,XL) + σ2
I (6)

Note that without training images, the prior covariance of
s is simply the covariance given byκ(X,X).

We formulate remote exploration as a three-part proce-
dure. During an initial training phase experts label a set of
training imagesAL with contentsL. The agent explores
the remote environment and collects a set of unlabeled
imagesA, of which it can only communicate a small sub-
setAO. The remainderAU refers to the untransmitted
images that operators will never see:A = AO ∪AU . The
operators receive a transmission consisting of the subset
AO along with all the image attributesX. They observe
the true image contentssO and infer unobserved image
contentssU . Figure 2 illustrates a graphical decompo-
sition of the selective image return task. Each node is
shaded to indicate whether the operator and/or explorer
can observe its value.

Note that our covariance function isstationary; covari-
ance is independent of the two images’ absolute attribute
values. This property means that hyperparametersθ can
generalize across environments with similar covariance
relationships. For practical purposes the training and test
images areinfinitely separated in space, so we define
them to be independent given the covariance hyperparam-
etersθ. By conditional independence,

P (sO | sL, sU , θ) = P (sO | sU , θ) (7)
and P (sU | sL, sO, θ) = P (sU | sO, θ) (8)

The agent tries to partition collected images intoAU and
AO in order to improve the reconstruction ofsU . This is
tantamount to an active learning or experimental design



Figure 2. Hand-labeled training valuessL permit
maximum-likelihood learning of the hyperparametersθ.
XL are independent attributes (locations and proxy fea-
tures) of the training set, andf(XL) is the Gaussian
process that produces training data. In a new test en-
vironment, observed values and hyperparameters de-
fine a prior Gaussian distribution over image contents.
The training and test images influence each other only
through the shared parametersΘ of the stationary co-
variance function. The explorer splits the test set into a
returned (observed) portionsO that is revealed to scien-
tists and an unobserved portionsU .

problem. We choose images whose contents are max-
imally informative with respect to the remainder when
“revealed” to operators during transmission.

Our agent’s utility function is based on information gain
- the mutual informationcriterion [13]. Guestrinet
al. demonstrate desirable properties of the mutual infor-
mation for choosing observation sites in Gaussian pro-
cess models [2]. Our objectiveR(AO) favors the size
m subsetAO which maximizes the mutual information
I(sO; sU ) between the contents of untransmitted images
and the transmitted images.

R(AO) = I(sO; sU ) for A = AU ∪AO, |AO| = m (9)

Correlations between image attributes and content let us
chooseAO adaptively, improving the objective without
observingsU or sO directly. For Gaussian-distributed
observations the mutual information is defined solely in
terms of the covariance matrix. We separate the covari-
ance matrixK into block diagonal form, with submatri-
ces associated with the transmitted portionκ(XO,XO)
and the remainderκ(XU ,XU ):

K =

[

κ(XO,XO) . . .
. . . κ(XU ,XU )

]

(10)

The mutual information of the returned images’ contents
with respect to the unobserved images can be written in
terms of differential entropiesh or expressed using sub-
matrix determinants [14]. Applying the equality from
equation 8 yields:

I(sU ; sO | sL, θ) (11)
= h(sO | sL, θ) + h(sU | sL, θ) − h(s | sL, θ) (12)
= h(sO | θ) + h(sU | θ) − h(s | θ) (13)

=
1

2
log

2πem|κ(XO,XO| 2πen−m|κ(XU ,XU )|

2πen|κ(X,X)|
(14)

Note that the hyperparameters and image attributes com-
pletely determine the elements ofK. These are indepen-
dent of the actual contents ins. This is true for any in-
formation gain metric based on a fixed stationary covari-
ance matrix; image attributes alone define the best ob-
servations. An alternative experimental design criterion
that meets this standard is the classic Maximum Entropy
Sampling (MES) criterion [15].

The labeled training images still play an important role in
estimatingθ. During the training phase, the agent learns
covariance function parameters using classical gradient
ascent of the likelihoodp(sL|θ) or by Bayesian meth-
ods such as Markov Chain Monte Carlo simulation. Re-
searchers have investigated similar ideas under the head-
ing of hierarchical Bayesian hyperparameter learning or
multi-task learning [16]. Our scenario differs in that the
content is hidden,e.g. the agent never receives any di-
rect observations from the test environment. At runtime
the agent extracts relevant image descriptors using on-
board analysis and uses the learned hyperparameters to
compute a prior covariance matrix. This is sufficient to
evaluate the objective of equation 14 for any transmitted
subset.

The following experiments use evidence maximization
to produce a point estimate ofθ. We then optimize the
objective of equation 14 through the pairwise swapping
algorithm of Shewry and Wynn [15]. The algorithm be-
gins with a greedy initialization and then tries all possible
substitutions of untransmitted images into the downlink
subset, accepting any swaps that improve the objective.
In our experiments this procedure always converged to
a local minimum within 10 swaps. While this method
produces good results in practice, the general problem
of observation subselection is NP-complete [2] and one
might still improve optimality through more expensive
optimization strategies such as simulated annealing or the
branch and bound method of Koet. al [17].

Some examples illustrate image attributes’ influence on
subsampling behavior. Consider the step function por-
trayed in Figure 3 (Top). This simulated environment
consists of two flat homogeneous regions separated by
a discontinuity. When the agent only has access to the
the spatial dimension, our experimental design criterion
seeks observations that fill the available space. This
amounts to periodic sampling that ignores observations’
content. Figure 3 (Bottom) shows the covariance ma-
trix and sampling behavior for this simple image return
scheme. Black dots along the diagonal of the covariance
matrix indicate the most informative subset of two im-
ages. In the topmost case, information-optimal data re-
turn reduces to even spatial coverage. This provides intu-
itive support for conventional image return strategies. If
one assumes some degree of correlation between neigh-
boring locations but has no other information about ob-
servations’ content then periodic sampling is information
optimal according to Equation 9.

Figure 4 shows a similar scenario with the Gaussian pro-
cess trained on a two-dimensional input: one dimension



Input: budgetm,
hyperparametersθ,
image productsA,
attributesX,
AU = A,
AO = {}
Output: transmission subsetAO

while |AO| < mdo
a = argmax

a∈AU
R(AO ∪ a)

AU ← AU \ a

AO ← AO ∪ a

for aO ∈ AO do
for a ∈ AU do

A
⋆

O ← {AO \ aO} ∪ a

A
⋆

U ← {AU ∪ aO} \ a

if R(A⋆

O) > R(AO) then
AO ← A

⋆

O

AU ← A
⋆

U

return AO

Algorithm 1: Selective image transmission based on su-
pervised learning of image contents.

corresponds to an observation’s physical position and an-
other is a synthetic feature resulting from onboard pat-
tern recognition. Here the blue dashed line represents the
actual image content, while the black line represents the
agent’s (noisy) image descriptor attributes computed au-
tomatically. The two lines represent different quantities
so we offset them vertically to emphasize that their val-
ues are not to scale. However, in this domain,change
in image content correlates withchangein the descrip-
tor. The labeled training images reveal this relationship;
the length-scale hyperparameters and the resulting co-
variance matrix reflect this correlation.

Finally, Figure 5 shows a Gaussian process with hyperpa-
rameters trained on image descriptors that closely match
the true content labels. The resulting covariance struc-
ture reflects the discovered redundancy; one can observe
the contents of the large, homogeneous portion of the in-
put space with just a few measurements. Image content
correlates strongly along this dimension and obviates the
need for dense sampling. This is tantamount to a subsam-
pling strategy that emphasizes diversity of data products
rather than even physical spacing. The operators would
see both the returned data products themselves and the
noisy predictions in blue so they would be able to recon-
struct the true environment with high accuracy.

Thus existing heuristic sample return strategies from the
exploration literature, such as spatially-periodic subsam-
pling [9] and representative subsampling [4, 18], can be
justified on information-theoretic grounds. These spe-
cial cases simply make different assumptions about the
noise in onboard image analysis and the spatio-temporal
relationships in image contents. A model describing cor-
relations between image attributes and science contents
makes these assumptions explicit; one can learn the ap-
propriate parameters directly from training images.

Figure 6. Covariance matrix for the Figure 7 traverse.

3. FIELD TRIALS

This section evaluates the image sequence subsampling
in an experimental analog of robotic planetary explo-
ration. We consider a geologic site survey task in which
operators map surface material visited during kilometer-
scale rover traverses. The base dataset consists of navi-
gation image sequences from Amboy Crater, a lava flow
located in the Mojave Desert, California (Figure 1). Our
investigation focuses on the East end of the lava flow
where the terrain consists of two principal types: basaltic
lava platforms and areas of deposited sediment. The in-
vestigations aimed to characterize the geomorphology of
basaltic platforms and identify the different densities of
basalt at different locations along each rover traverse.

Our rover platform is “Zöe,” an exploration rover devel-
oped at the Carnegie Mellon Robotics Institute for long
range autonomous navigation [6, 19]. Zoë is approxi-
mately2 meters in length and travels at up to1m/s un-
der solar power. Autonomous path planning using stereo
terrain evaluation provides waypoint navigation and haz-
ard avoidance. The stereo cameras produce a continuous
stream of images with considerable overlap and redun-
dant content. The goal of selective image return is to re-
turn the subset of navigation images that best describes
the density of basalt along the rover path.

3.1. Method

The rover performed an autonomous transect approxi-
mately 200-300 meters in length for each trial. It acquired
navigation images at 2 meter intervals. We use320×240
pixel navigation images with a60-degree field of view
directed at the surface directly in front of the rover. We
selected a total of7 trials for their superior lighting con-
ditions: in particular, they lacked rover shadows which
otherwise confuse the texture analysis. Of these, we re-
served the first as a training set and tested system perfor-
mance on the remaining6 runs. Each traverse crossed
several boundaries between sediment and basalt terrain.



Figure 3. Top: Image return based only the position attribute. The noisy step function appears above, and the associated
covariance matrix below.

Figure 4. Optimal image return using position attribute and anoisy image content attribute. The additional input is a
rough correlate of the true image label.

Figure 5. Inputs include position attribute and an accurate image descriptor. Here the Gaussian process model infers
strong non-local correlations.



We produce ground-truth image content labels through
manual inspection. The images show varying mixtures
of two main terrain types: sediment composed of light
material and basaltic lava characterized by fields of dark,
dense rocks. We ascribe a value of−1.0 to images con-
taining less than 50% basalt by pixel area, and1.0 to
those containing over 50% basalt. We made no attempt
to express subtler distinctions using intermediate values
although the model would certainly accommodate them.
The Gaussian process used a2-dimensional input space
consisting of the physical imaging position along the tra-
verse and a single scalar image texture attribute. We com-
puted the texture attribute usingtextonsextracted from
the foreground half of the image [20]. Textons are pixel-
level texture classifications generated in our case by con-
volving a training set of images with the Maximum Re-
sponse 8 filter bank. This produces an8-dimensional re-
sponse vector for each pixel; responses are aggregated
and clustered using k-means to form a set of32 “univer-
sal” textons describing canonical texture categories. Dif-
ferent textons approximately capture the different classes
of surface materials such as basalt and sediment.

The proportions of each texton in the images form a 32-
dimensional image descriptor; we compress it to a single
scalar value using Principal Component Analysis. For a
novel image we perform the filter bank convolution and
assign each individual pixel to its Euclidean-nearest tex-
ton. The resulting histogram of texton counts, projected
into the basis learned from the training images, reflects
the new image’s content according to the principal dis-
tinction in the training set.

3.2. Results

Figure 7 shows the time series resulting from one of the
test sequences. The blue dashed line indicates ground
truth image content for the traverse. This correlates well
with the image descriptor shown here by a black dotted
line. Again, we offset the two lines vertically to empha-
size that they represent different (but correlated) quanti-
ties. We reduce noise by smooth the image descriptor
values using a secondary latent Gaussian process model
to produce the second image attribute. Over time its dis-
tribution is approximately bimodal, reflecting the two dis-
tinct classes of surface material at the site.

Figure 7 also shows the actual images from the optimal
size-4downlink. These constitute a representative sam-
ple of the principal terrain types from different areas of
the traverse. The subset selection is aperiodic: selec-
tive return allocates a single image to the large homo-
geneous sediment patch in the first half of the traverse,
and two closely-spaced images to the rapid transitions
near the end. The associated covariance matrix appears in
Figure 6. The environment exhibits fairly sharp discrete
boundary transitions between basalt and sediment units.
These transitions combined with a distance-decaying spa-
tial correlation produce a covariance structure akin to a
block diagonal matrix.

Figure 8. Mean absolute reconstruction error. Error bars
indicate 95% confidence intervals based on6 traverses.

Figure 9. Reconstruction scores per traverse for all sub-
set sizes. We provide adaptive and periodic sampling re-
sults for the six tests.

Figure 8 shows reconstruction error for six trials of adap-
tive sampling compared to a periodic subsampling strat-
egy that returns images at regular intervals and ignores
image content. We produce a reconstruction by reveal-
ing the ground truth image contents for transmitted im-
ages. The resulting reconstruction consists of Maximum
A Posteriori content values for all images based on a
Gaussian process after conditioning on the revealed im-
ages’ contents. To ensure a fair comparison the input
space of the reconstruction model incorporates the com-
plete2-dimensional image attribute even in the periodic
cases where subselection ignores image content. This re-
flects scientists’ presumed ability to infer the image con-
tents of other locations in the traverse based on all the
available returned information.

Figure 8 shows mean absolute errors for various subset
sizes. The adaptive method utilizing the mutual infor-
mation criterion significantly outperforms periodic image
return for small values ofm. Here an error value of1.0
corresponds to an inference procedure that guesses either
class with equal probability, while0.0 is a perfect recon-
struction. Figure 9 illustrates the per-traverse spread of
reconstruction errors. For this environment reconstruc-



Figure 7. Example trial from the Amboy lava field dataset. Dotsindicate images comprising the size4 optimal downlink.

tion error for adaptive sampling appears consistently bet-
ter across traverses and more reliable across different sub-
set sizes within a single traverse.

Figures 11 - 12 provide some insight into typical sub-
sampling behavior for three other traverses. Here again
the horizontal axis shows the spatial dimension, and the
solid black line indicates noisy observations with the tex-
ture feature on the vertical axis. The blue line (offset, not
to scale) shows ground truth labels for each image. Cir-
cles and triangles indicate subsets of sizes4 (circles), and
6 (triangles) returned by the algorithm for each of these
image budgets.

The adaptive method transmits representative samples
from the principal terrain types as determined by both
spatial proximity and difference in the image descrip-
tors. Image return favors areas of high change like unit
boundaries and ignores long homogeneous stretches like
the sediment basin that dominates the first half of Fig-
ure 11. As the budget grows, the subsample shifts to ac-
commodate additional images while balancing diversity
in content against spatial coverage.

4. CONCLUSIONS

We have presented an approach for producing
information-optimal summary subsets of temporal
image sequences. Selective subsampling “encodes” the
complete data set’s science content in a compressed
representation: the returned images themselves and the
attribute vectors of all other images. Our method is
unique in that it explicitly accounts for data contents that
are too subtle to detect directly using automatic pattern
recognition. Instead we extract correlated descriptor
attributes that are simple to detect. An active learning
criterion indicates those observations which are most
informative with respect to the underlying science con-
tent. This permits optimal summary of image sequences
that respects both spatio-temporal correlations and the
learned fidelity of the onboard pattern recognition.
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